Nucleosynthesis

Jonas Lippuner

July 13, 2021 TCAN Meeting 2021 BNS/BH-NS Merger Workshop

- 1. Brief nucleosynthesis overview
- 2. Nuclear reaction networks
- 3. r-Process in neutron star mergers

Solar system abundances

Solar system abundances

The s-process

slow net	utron	captu	ire										90 _{Zr}	91 _{Zr}	92 _{Zr}	
$\tau_{eta^-} \ll$	$\tau_n \sim$, 10 ²	- 10	⁵ yr									⁸⁹ Y			
									⁸⁴ Sr		⁸⁶ Sr	87 _{Sr}	⁸⁸ Sr			
											⁸⁵ Rb		⁸⁷ Rb			
						78 _{Kr}		80 _{Kr}	82 _{Kr}	⁸³ Kr	⁸⁴ Kr		86 _{Kr}			
								79 _{Br}	81 _{Br}							
				⁷⁴ Se		⁷⁶ Se	77 _{Se}	⁷⁸ Se	⁸⁰ Se		⁸² Se					
						75 _{As}										
		⁷⁰ Ge		72 _{Ge}	⁷³ Ge	⁷⁴ Ge		⁷⁶ Ge								
		⁶⁹ Ga		⁷¹ Ga												
⁶⁶ Zn	67 _{Zn}	⁶⁸ Zn		70 _{Zn}												
65 _{Cu}																

The s-process

The s-process

The r-process

																-
rapid ne	eutron	capti	ure										90 _{Zr}	91 _{Zr}	92 _{Zr}	
$\tau_n \ll \tau$	$_{\beta^{-}}$ ~	, 10 n	ns – 1	0 s									⁸⁹ Y			
									⁸⁴ Sr		⁸⁶ Sr	87 _{Sr}	⁸⁸ Sr			
											⁸⁵ Rb		⁸⁷ Rb			
						78 _{Kr}		80 _{Kr}	82 _{Kr}	⁸³ Kr	⁸⁴ Kr		86 _{Kr}			
								79 _{Br}	81 _{Br}							
				⁷⁴ Se		⁷⁶ Se	77 _{Se}	⁷⁸ Se	⁸⁰ Se		⁸² Se					
						⁷⁵ As										
		⁷⁰ Ge		72 _{Ge}	⁷³ Ge	⁷⁴ Ge		⁷⁶ Ge								
		69 _{Ga}		⁷¹ Ga												
66 _{Zn}	67 _{Zn}	⁶⁸ Zn		70 _{Zn}												
⁶⁵ Cu																

The r-process

Los Alamos National Laboratory

The r-process

s-proce	ss: $ au_{eta}$	3- ≪	$\langle au_n accelor$	~ 10 ²	- 10	⁵ yr							90 _{Zr}	91 _{Zr}	92 _{Zr}	
r-proces	ss: $ au_n$	$\ll \tau$	_β - ~	- 10 n	ns – 1	0 s							89 _Y			
									⁸⁴ Sr		86 _{Sr}	87 _{Sr}	88 _{Sr}			
											⁸⁵ Rb		87 _{Rb}			
						78 _{Kr}		80 _{Kr}	82 _{Kr}	83 _{Kr}	⁸⁴ Kr		86 _{Kr}			
								79 _{Br}	81 _{Br}							
				⁷⁴ Se		⁷⁶ Se	77 _{Se}	⁷⁸ Se	⁸⁰ Se		⁸² Se					
						⁷⁵ As										
		⁷⁰ Ge		72 _{Ge}	⁷³ Ge	⁷⁴ Ge		⁷⁶ Ge								
		69 _{Ga}		⁷¹ Ga												
66 _{Zn}	67 _{Zn}	68 _{Zn}		70 _{Zn}												
⁶⁵ Cu																

neutron drip line

s-proce	ss: $ au_{eta}$	3- ≪	$\langle au_n angle$	~ 10 ²	- 10	⁵ yr							90 _{Zr}	91 _{Zr}	92 _{Zr}	
r- <mark>proce</mark> s	ss: $ au_n$	$\ll \tau$	_β - ~	- 10 n	ns – 1	0 s							89 _Y			
									⁸⁴ Sr		⁸⁶ Sr	87 _{Sr}	88 _{Sr}			
											85 _{Rb}		87 _{Rb}			
						78 _{Kr}		80 _{Kr}	82 _{Kr}	⁸³ Kr	⁸⁴ Kr		86 _{Kr}			
								79 _{Br}	81 _{Br}							
				⁷⁴ Se		⁷⁶ Se	77 _{Se}	⁷⁸ Se	⁸⁰ Se		⁸² Se					
						75 _{As}										
		⁷⁰ Ge		⁷² Ge	⁷³ Ge	⁷⁴ Ge		⁷⁶ Ge								
		⁶⁹ Ga		⁷¹ Ga												
66 _{Zn}	67 _{Zn}	⁶⁸ Zn		70 _{Zn}												
65 _{Cu}																

neutron drip line

Los Alamos National Laboratory

Los Alamos National Laboratory

Solar system abundances

- 1. Brief nucleosynthesis overview
- 2. Nuclear reaction networks
- 3. r-Process in neutron star mergers

SkyNet

- General-purpose nuclear reaction network
- \sim 8000 isotopes, \sim 140,000 nuclear reactions
- Written in C++ with Python bindings
- Open source

Lippuner, J. and Roberts, L. F., ApJS 233, 18 (2017)

SkyNet

Define abundance

$$\mathbf{Y}_i = \frac{n_i}{n_B}.$$
 (1)

Consider reaction

$$p + {}^{7}Li \rightarrow 2 {}^{4}He$$
 (2)

with rate $\lambda = \lambda(T, \rho)$. Then

$$\begin{split} \dot{Y}_{4\text{He}} &= 2\lambda Y_{p} Y_{7\text{Li}} + \cdots, \\ \dot{Y}_{p} &= -\lambda Y_{p} Y_{7\text{Li}} + \cdots, \\ \dot{Y}_{7\text{Li}} &= -\lambda Y_{p} Y_{7\text{Li}} + \cdots \end{split} \tag{3}$$

Need to solve big, stiff, non-linear system of ODEs

SkyNet features

Physics

- Extended Timmes equation of state (EOS)
- Calculate nuclear statistical equilibrium (NSE)
- NSE evolution mode
- Self-heating
- · Calculate inverse rates from detailed balance to be consistent with NSE
- Electron screening with smooth transition between weak and strong screening (reactions and NSE)

Code

- Adaptive time stepping
- Python bindings
- Modularity
- Extendible reaction class (currently REACLIB, table, neutrino)
- Make movies

- 1. Brief nucleosynthesis overview
- 2. Nuclear reaction networks
- 3. r-Process in neutron star mergers

Two types of merger ejecta

Dynamical tidal tail ejecta Typically very neutron-rich $M_{\rm ej} \sim 10^{-4} - {
m few} imes 10^{-2} M_{\odot}$

See: Bauswein+13, Hotokezaka+13, Foucart+14, Sekiguchi+15, Kyutoku+15, Radice+16

Figure credit: Price+06

Disk outflow

Typically neutron-poor

 $M_{
m ej} \sim {
m few} imes 10^{-3} M_{\odot}$

See: Surman+08, Wanajo+11, Fernández+13, Perego+14, Just+15, Foucart+15, Siegel+17, Siegel+18, Miller+19

Figure credit: Miller+19

SkyNet results

http://jonaslippuner.com/skynet/SkyNet_Ye_0.010_s_010.000_tau_007.100.mp4 http://jonaslippuner.com/skynet/SkyNet_Ye_0.250_s_010.000_tau_007.100.mp4

SkyNet results

Final abundances from accretion disk outflow

Miller+19

Nucleosynthesis in HMNS disk outflow

- 3 M_{\odot} central HMNS or BH, 0.03 M_{\odot} accretion disk
- Variable HMNS lifetime, neutrino leakage, α viscosity

Final abundances vs. HMNS life time

JL, Fernández, Roberts, et al. 2017, MNRAS 472, 904, arXiv:1703.06216

Los Alamos National Laboratory

Black hole-neutron star merger

Roberts, JL, Duez, et al. 2017, *MNRAS* 464, 3907, arXiv:1601.07942

- 1. Full GR simulation of BH–NS Francois Foucart (UNH), *Foucart et al.*, Phys. Rev. D 90, 024026 (2014)
- 2. Evolve ejecta in SPH code Matt Duez (WSU)
- Nucleosynthesis with varying neutrino luminosity JL and Luke Roberts (MSU)

Figure credit: F. Foucart

BHNS: Final abundances vs. neutrino luminosity

Los Alamos National Laboratory

Jonas Lippuner, 7/13/2021 | 20

UNCLASSIFIED

Uncertainties

Los Alamos National Laboratory

- r-Process produces about half of heavy elements
- Nuclear reaction network calculations require lots of nuclear data
- SkyNet is an open source reaction network for r-process calculations
- Tidal tail ejecta from neutron star mergers (NS-NS and BH-NS) robustly makes full r-process
- Disk outflow may or may not make full r-process
- Lifetime of hypermassive neutron star might can affect nucleosynthesis
- Uncertainties in nuclear data can produce large uncertainties in network calculations

Extra slides

Abundance: Let n_i be the number density of the nuclide of species *i* (e.g. ¹²C, ⁵⁶Fe, ¹⁹⁷Au), then the abundance Y_i is

$$Y_i = \frac{n_i}{n_B},\tag{4}$$

where n_B is the number density of baryons (total number conserved).

Composition: Set of abundances denoted by $\vec{Y}(t)$

Goal: Compute $\vec{Y}(t)$ for a given thermodynamic history

Ingredients

- Initial composition $\vec{Y}(t=0)$
- Thermodynamic history T(t) and $\rho(t)$
- Time derivatives of abundances \dot{Y}_i

Nuclear reaction network

Initial composition: Assume Nuclear Statistical Equilibrium (NSE) at some initial electron fraction Y_e , temperature, and entropy per baryon

Time derivatives of abundances: Let's consider a few reactions involving ¹⁹⁷Au:

$\begin{matrix} 0 \\ \lambda_2' \\ \lambda_2' \end{matrix}$

Where all rates $\lambda = \lambda(T, \rho)$. Then we have

$$\begin{split} \dot{Y}_{197}{}_{Au} &= \lambda_1 \, Y_{197}{}_{Pt} \\ &+ \lambda_2 \, Y_n \, Y_{196}{}_{Au} - \lambda'_2 \, Y_{197}{}_{Au} \\ &- \lambda_3 \, Y_n \, Y_{197}{}_{Au} + \lambda'_3 \, Y_{^4\text{He}} \, Y_{194}{}_{lr} \\ &+ \cdots \end{split}$$

(5)

Nuclear reaction network

In general, for species *i* we have

$$\dot{Y}_{i}(t) = \sum_{\alpha} \lambda_{\alpha}(T,\rho) N_{i}^{\alpha} \prod_{m \in \mathcal{R}_{\alpha}} Y_{m}(t) = \dot{Y}_{i}(\vec{Y},T,\rho),$$
(6)

where α runs over all reactions, $\lambda_{\alpha}(T, \rho)$ is the reaction rate, N_i^{α} is the number of *i* created/destroyed, and \mathcal{R}_{α} is the set of reactants of reaction α (with duplicates).

This is a big **system of coupled, non-linear ODEs**. It is usually very stiff, so use implicit method

$$\dot{\vec{Y}}(t+\Delta t) = \frac{\vec{Y}(t+\Delta t) - \vec{Y}(t)}{\Delta t} = \dot{\vec{Y}}(\vec{Y}(t+\Delta t), T, \rho).$$
(7)

Write as root finding problem in $\vec{X} = \vec{Y}(t + \Delta t)$

$$0 = \dot{\vec{Y}}(\vec{X}, T, \rho) - \frac{\vec{X} - \vec{Y}(t)}{\Delta t}.$$
(8)

Solve using iterative Newton–Raphson method, which requires a sparse matrix solver for Jacobian matrix

$$J_{ij} = \frac{\partial Y_i}{\partial Y_j} - \frac{\delta_{ij}}{\Delta t}.$$
(9)

Nuclear reaction network

In general, for species *i* we have

$$\dot{Y}_{i}(t) = \sum_{\alpha} \lambda_{\alpha}(T,\rho) N_{i}^{\alpha} \prod_{m \in \mathcal{R}_{\alpha}} Y_{m}(t) = \dot{Y}_{i}(\vec{Y},T,\rho),$$
(6)

where α runs over all reactions, $\lambda_{\alpha}(T, \rho)$ is the reaction rate, N_i^{α} is the number of *i* created/destroyed, and \mathcal{R}_{α} is the set of reactants of reaction α (with duplicates).

This is a big **system of coupled, non-linear ODEs**. It is usually very stiff, so use implicit method

$$\dot{\vec{Y}}(t+\Delta t) = \frac{\vec{Y}(t+\Delta t) - \vec{Y}(t)}{\Delta t} = \dot{\vec{Y}}(\vec{Y}(t+\Delta t), T, \rho).$$
(7)

Write as root finding problem in $\vec{X} = \vec{Y}(t + \Delta t)$

$$0 = \dot{\vec{Y}}(\vec{X}, T, \rho) - \frac{\vec{X} - \vec{Y}(t)}{\Delta t}.$$
(8)

Solve using iterative Newton–Raphson method, which requires a sparse matrix solver for Jacobian matrix

$$J_{ij} = \frac{\partial Y_i}{\partial Y_j} - \frac{\delta_{ij}}{\Delta t}.$$
(9)

HMNS: Electron fraction distribution

Los Alamos National Laboratory

UNCLASSIFIED

HMNS: Ejected mass

BHNS: Electron fraction distribution

Jonas Lippuner, 7/13/2021 | 29